航海・配船支援システム

導入について

2015年12月21日

特定非営利活動法人 マリン・テクノロジスト (MTL)

本支援システム導入し、船長等乗組みの理解を得ることで省エネ運航を実施し効果が出ることが明らかに

このシステム運用:

- ① MTLが、最適な航海計画を提供し、
- ② 船長は、この情報を基に航海を行い
- ③ 船社、荷主は、運航の実態を把握し改善指導を行う。
- ④ MTLは、航海終了後にCO2排出(燃費)削減量を評価する。

このシステムのポイント!

船社、荷主が行う、「運航の実態を把握し改善指導」

本支援システムを利用いただく荷主・船社

「船社が自ら自社船の状況把握と改善指導を行う」ことができるまたは取り組んでいく意思のあること

- 1. 船舶側に省エネ運航の主旨の理解の徹底
- 2. 省エネ運航の可能性、入力事項の把握
- 3. 船舶への省エネ運航改善指導

配船支援システム

航海支援システム

1. お問い合わせ

●システム全般窓口

特定非営利活動法人マリン・テクノロジスト 担当(山崎)

電話:03-6458-5241 メール:info@mtl.or.jp

●船載機関係

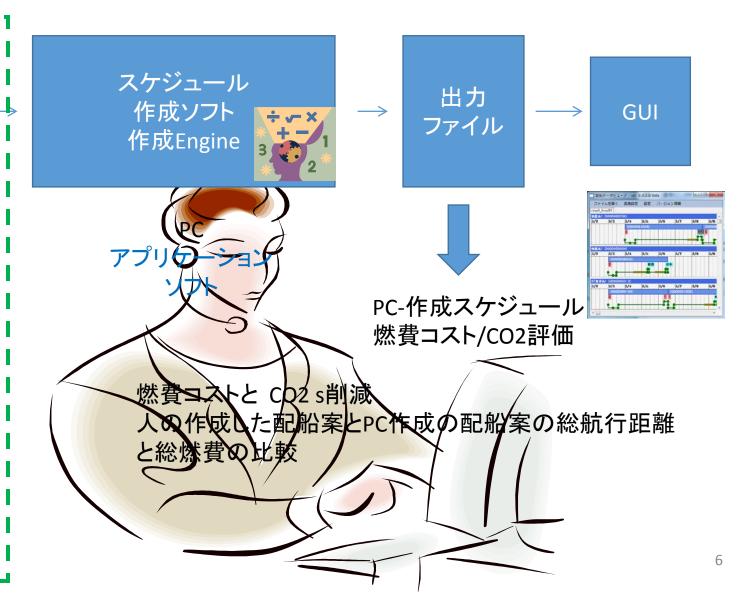
エムエイチアイマリンエンジニアリング株式会社 日本無線株式会社 株式会社戸高製作所

配船支援システム 導入の流れ

■ 配船支援システム

データ ベース (MDB)

データベース 船舶仕様 港湾


• • •

制約条件

. . .

オーダー 人の作成した 配船案

2. 事前打ち合わせ

打ち合わせ内容	顧客	マリン・テクノロジスト
▶事前準備	情報シートの入力 船舶情報、港情報、積荷情報	最適化情報の整理 最適化実行手順検討・構築 プログラムの作成
▶試行∕効果確認	既存の配船結果との比較 効果の確認	過去データでの試行 試行結果報告書の作成
▶運用方法の検討	PCの使い方、作成時期等の検討	
▶実運用環境の準備	PCの準備	稼働確認 制約条件調査 各種情報のデータベース (MDB) 入力

<スケジュール>

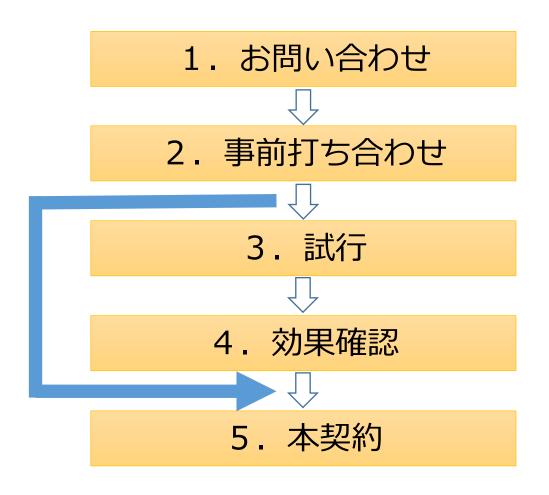
項目	1月	2月	3月	4月	5月
▶事前準備					
▶システム準備					
≽試行					
≻効果確認					
▶運用方法の検討					
▶サービス開始					

<必要な機材>

配船用PC(Core i7推奨)

3. 試行

- ○過去の配船データをもとに、配船計画を最適化
- ○配船案を比較検討


4. 効果確認

- ○総航海距離、総燃料消費量での効果提示
- ○効果の確認

5. 本契約

- ○サービス申請、契約締結
- ○サービス利用開始

航海支援システム、配船支援システム 導入の流れ

サービスの内容

○最適航海計画情報の提供

消費燃料が最小で環境に優しい運航をサポート just in timeの最適航海計画を提供 航海中の再計算でより高精度な計画に更新 入港時の情報入力で航海の解析結果を表示 高精度な気象・海象予測値を提供 船載機上でグラフィカルに表示

○運航管理情報の提供

動静把握 航海計画管理 燃費の把握

■レポートの提供初期性能評価レポート運航性能評価レポート

<初期性能評価レポート>

一般配置図、海上試運転結果等を基に解析を行い、 風抵抗係数、 波浪中抵抗増加応答関数等船舶性能評価に必要な基本情報を評価する。 併せて、船舶性能関連基本情報を荷主・船社に提供する。

〈レポートの項目〉

- ○船舶性能関連諸数値 推進性能 機関性能
- ○船舶の推進性能

平水中推進性能 - 基本推進性能計算結果 風圧抵抗特性 - 喫水線上面積計算結果 - 風圧抵抗特性計算結果 波浪中抵抗増加特性 - 規則波·不規則波中抵抗増加係数計算結果

<運航性能評価レポート(月次・年次)>

運航モニタリング情報を基に解析を行い、 CO_2 排出削減量、運航管理関連情報を荷主・船社に提供することで、効率的な運航管理に資する。併せて乗組員の重複作業の軽減を図ることができれば良い。

くレポートの項目>

- ・航海条件 船載機からの入力出港日時、到着日時、喫水、排水量、載貨量
- ・航海実績

航海距離、航海時間、航海船速、回転数、翼角、対地船速、対水船速、 風速、波高(予測値)、海流速度(予測値)

- ・運航評価 モニタリングデータ、入力値からBAUとProject状態について解析計算 燃費:主機燃料消費量、時間当り燃料消費量、マイル当り燃料消費量 輸送効率:輸送活動量、航海活動量、EEOI、EENI 運航船舶推進性能:Kn'、Kn(SPTW)、Kn(SPOG)
- ·CO₂排出量削減効果 主機燃料削減量、CO₂排出削減量
- ・その他
- ■CO₂排出削減量:運航モニタリング情報に基づき、開発したCO₂排出削減量評価手法により実証実験の各対象船毎にCO₂排出削減量を評価

2. 事前打ち合わせ

サービス開始までの詳細な流れや必要な機材、費用等をお知らせいたします。

打ち合わせ内容	顧客	マリン・テクノロジスト
▶事前準備	船載機の選定・設置工事 モニタリングデータ項目決 定	
▶運航データ収集	運航データ・モニタリング 航海情報の提供	運航性能評価 支援システムを使わないBAU(常用)状態評価
➢初期性能評価	一般配置図等技術図書提供	初期性能評価
▶サービスの提供	運航データ・モニタリング 航海情報の提供	運航性能評価 支援システムを使った実航海状態評価
≽評価	効果の確認	BAUと実航海との比較評価 ⇒ 効果

<スケジュール>

項目	1月	2月	3月	4月	5月
>事前準備					
▶運航データ収集▶ BAU設定					
➤ 運航性能評価➤ 初期性能評価					
▶サービスの提供					
≻評価					

<必要な機材>

船載機、及び周辺機器 電子海図

3. 試行

- ○2ヶ月の試行サービス利用
- ○効果を確認してから、本契約
- ○試行期間はサービス費用無料(設置工事等初期費用は必要)

4. 効果確認

○効果確認手順

ステップ1; 常用状態 (BAU)

本サービスを受けていない状態 (BAU)を運航モニタリングデータにより同定

ステップ2;本サービスによる運航実績(Project)

本サービスを受けた航海の航路、船速、燃料消費量 (P)等についてモニタリング

ステップ3;削減効果の評価

第三者審査機関により妥当性の確認を受けたCO2排出削減量評価手法により、 本サービスを受けたことによる効果の評価結果を提供

■実績航路上をBAUの出力にて航海した場合の燃料消費量(Reference)を同定

燃料消費量削減量=燃料消費量(R)-燃料消費量(P)

ステップ4;確認

5. 本契約

- ○サービス申請、契約締結
- ○サービス開始後:月次、年次報告書の提供
- ○メンテナンス:運航性能のチューニング(年2回程度)

ご清聴有難うございました。

●お問い合わせ先

特定非営利活動法人マリン・テクノロジスト 担当(山崎)

電話: 03-6458-5241 メール: <u>info@mtl.or.jp</u>

協力・支援

海上技術安全研究所 運航計画技術研究センター(加納、權)

電話:0422-41-3594

メール: kano@nmri.go.jp kon@nmri.go.jp